Suggested: (a+b+c)2-(a-b-c)2 - a+b+c=13 a^2+b^2+c^2=69 find ab+bc+ca - a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca) - a3+b3+c3-3abc=1/2(a+b+c) (a-b)2+(b-c)2+(c-a)2 - if a/b=4/5 and b/c=15/16 then the value of c^2-a^2/c^2+a^2 is - prove that a3+b3+c3-3abc=1/2(a+b+c) (a-b)2+(b-c)2+(c-a)2 - a+b+c=15 and a^2+b^2+c^2=83 find a^3+b^3+c^3-3abc - (a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3/(a-b)^3+(b-c)^3+(c-a)^3 - if a+b+c=0 then show that a^2(b+c)+b^2(c+a)+c^2(a+b)+3abc=0 - (b-c)2+(c-a)2+(b-d)2=(a-d)2 - a+b+c=4 a^2+b^2+c^2=10 a^3+b^3+c^3=22 - if a+b+c=15 and a^2+b^2+c^2=83 find the value of a^3+b^3+c^3-3abc - if a+b+c=0 then what is the value of a2+b2+c2/(a-b)2+(b-c)2+(c-a)2 - a+b+c=1 a^2+b^2+c^2=2 a^3+b^3+c^3=3 - (a+b+c)2 (a b c)2 Browse related:
privacy contact
Copyright 2017 bapse
bapse is powered by Google and Youtube technologies
Thank you, for using bapse.
This site was designed and coded by Michael DeMichele,
and is being used as a portfolio demonstration. View more.