Suggested: cos pi/8 - (1+cos pi/8)(1+cos3pi/8)(1+cos5pi/8)(1+cos7pi/8) - cos inverse cos 8 pi by 5 - 96cos(pi)/(33)cos(2 pi)/(33)cos(4 pi)/(33)cos(8 pi)/(33)cos(16 pi)/(33) is equal to - cos^4(pi/8)+cos 4(3pi/8)+cos^4(5 pi/8)+cos^4(7 pi/8) - 16 cos(2pi)/(15)cos(8 pi)/(15)cos8pi)/(15)cos14pi)/(15)=1 - cos^(2)(pi)/(8)+cos 2)(3pi)/(8)+cos^(2)(5 pi)/(8)+cos^(2)(7 pi)/(8)=2 - cos inverse cos 8 pi by 7 - cos^(2)(pi)/(10)+cos^(2)(3pi)/(10)+cos^(2)(6 pi)/(10)+cos^(2)(8 pi)/(10)=2 - prove that cos^(4)(pi)/(8)+cos4)(3pi)/(8)+cos^(4)(5 pi)/(8)+cos^(4)(7 pi)/(8)=(3)/(2) - prove that cos^(2)(pi)/(8)+cos^(2)(3pi)/(8)+cos^(2)(5 pi)/(8)+cos^(2)(7 pi)/(8)=2 - cos^(2)(pi)/(8)+cos^(2)(3pi)/(8)+cos^(2)(5 pi)/(8)+cos^(2)(7 pi)/(8)=2 - lim_(x rarr(pi)/(4))(8 sqrt(2)-(cos x+sin x)^(7))/(sqrt(2)-sqrt(2)sin2x) - cos pi 8 Browse related:
privacy contact
Copyright 2017 bapse
bapse is powered by Google and Youtube technologies
Thank you, for using bapse.
This site was designed and coded by Michael DeMichele,
and is being used as a portfolio demonstration. View more.